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Summary

A consequence of “A Logic of Exceptions” (ALOE, draft 1981, 2007, 2nd edition 2011)

is  that  it  refutes  ‘the’  general  proof  of  Cantor’s  Theorem on the  power  set,  so  that  the

latter holds only for finite sets but not for “any” set.  The diagonal argument on the real

numbers  can  be  rejected  as  well.  There  is  a  bijection  ‘in  the  limit’  between  �  and  �,

which  can  also  be  called  a  bijection  ‘by  abstraction’.  If  no  contradiction  turns  up  it

would become feasible to use the notion of a ‘set of all sets’ �, as it would no longer be

considered a contradiction that the power set of � would be an element and subset of �

itself. The books ALOE, “Elegance with Substance” (EWS, 2009) and “Conquest of the

Plane”  (COTP,  2011)  also  develop  calculus  without  the  use  of  limits  or  infinitesimals.

Lagrange’s algebraic approach is best supplemented with a manipulation of the domain.

Non-standard  analysis  is  not  needed  for  the  derivative.  Some  aspects  of  it  may  be

reformulated  and  then  may  be  of  use  for  the  education  on  the  real  number  line.  See

“Neoclassical  mathematics  for  the  schools”  (2011).  This  paper  puts  these  results  into

historical  perspective.  The  Appendix  discusses  Cantor’s  original  1874  proof  and

suggests  that  the  notion  of  a  limit  in  �  cannot  be  defined  independently  from  the

construction of � itself.

PM. I thank Richard Gill,  Bart  van Donselaar,  Alain Schremmer and J.  John C. Kuiper

for  some  comments  and  suggestions  for  relevant  literature.  I  thank  two  other  readers



whose comments have resulted in the following two corrections. In February and March

2012 a confusing typing error in section 2 (f instead of j) was corrected. In March 2012

the  exception  for  Russell’s  and  Cantor’s  sets  that  was  already  explained  in  ALOE

(2007:129)  was  stated  here  again,  since  the  shorthand  notation  created  confusion  on

infinite regress.

1.  Introduction

1.1  Rigour, with footnotes

Set theory belongs to logic because of the notions of all, some and none, and it belongs

to  mathematics once we start  counting  and measuring. Cantor’s  Theorem on the  power

set somewhat blurs that distinction since the general proof uses logical methods while it

would also apply to infinity - and the latter notion applies to the set of natural numbers �

= {0, 1, 2, ... } and the set of reals � = 2�. It is a mathematical abstraction that infinity

comes  about  when  a  set  cannot  have  a  bijection  with  all  its  subsets,  but  to  show  the

existence of such a possibility we tend to refer to the natural numbers.

Since  a  mathematical  paper  requires  a  theorem  and  proof,  this  paper  will  prove  that

Cantor’s Theorem does not hold for infinite sets. This approach uses three-valued logic,

as  explained  in  my  “A  Logic  of  Exceptions”  (ALOE,  draft  1981,  2007,  2nd  edition

2011). See Gill  (2008) for a review of ALOE and Gill  (2012) for a review of EWS and

COTP.

Logic  and  number  are  also  difficult  to  separate  when  we  link  up  with  geometry.

Consider a line tangent to a circle. They have a point in common. A point has no size but

only  position.  Thus  line  and  circle  have  ‘nothing’  in  common,  in  terms  of  size.  They

have  ‘something’  in  common,  in  terms  of  position.  But  point/nothing  ñ

position/something.  To  have  nothing  and  something  in  common  would  be  internally

inconsistent.  The  solution  is  to  regard  the  issue  in  terms  of  logic  and  different

perspectives. The solution requires  abstraction.  In one respect (size) it  is nothing and in

another  respect  (location)  it  is  something. A size measure  without  paradox  can then be

found in the distance from the origin. The solution requires  a mix of logic, number and

geometry,  and  we  meet  the  same  mix  in  issues  of  the  infinite  and  infinitesimal.  Only

careful distinction of perspectives will keep us out of contradictions.

My earlier  work tended to regard ¶  and 1 /  ¶  as undefined,  except  only as shorthand.

The  paradoxes  of  infinity  thus  considered  essentially  solved,  I  tended  to  neglect  those.

(A  paradox  is  only  a  seeming  contradiction.)  Somehow  and  rather  unwillingly  there

arose  some  trail  of  thought  that  forced  me  to  look  into  these  paradoxes.  This  paper

reports about this foray into number theory and non-standard analysis,  starting from the

sound basis  in  DeLong (1971).  The  results  are  tentative  and I am pretty  sure  that  there

are  experts  who  have  much  more  to  say  on  this.  As  an  econometrician  and  teacher  of

mathematics  without  a  background  in  number  theory  and  non-standard  analysis  I  have
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only  accessed  some  introductory  works  and  history  books  that  I  thought  that  I  could

understand. My presumption was that the easy books could transfer the fundamentals in

a  clear  manner.  They  didn’t.  My  presumption  was  that  it  would  be  a  waste  of  time  to

look into the hard stuff if the introduction was already unclear. This is not generally true

of  course.  In  economics  it  might  take  various  deep  courses  to  be  able  to  read  the

newspaper,  i.e.  to  see  why  most  newspaper  reports  are  bogus.  But  numbers  ?  For

highschool ?

Boyer  (1949)  on  the  history  of  calculus  provides  ‘rigour,  with  footnotes’.  That  is,  his

chapter VII “The rigorous formulation” includes footnotes (specifically no 77 and 92) at

crucial  points  -  “Now  the  fundamental  theorems  on  limits  could  be  proved  rigorously

[77]”  and  “(...)  which  clarifies  the  situation  [92]”  -  which  footnotes  destroy  the

suggested rigour and clarification. 

Given the tentative nature of this paper, otherwise than the proof on Cantor’s Theorem, I

record  questions  and  suggested  answers.  For  example,  when  introductory  books  and

papers on number theory and non-standard analysis speak about a single notion of limit

(though defined in various manners, e.g. a limit  to a terminus or really attained),  then I

not  only  record  that  confusion,  but  my  suggestion  is  also  that  there  are  (at  least)  two

notions,  one for  decimal  number and one for  measured  length.  It  is  not  clear  to  me yet

whether  this  distinction  makes  full  sense  but  at  least  it  helps  to  understand  different

perspectives in a literature that is otherwise rather confusing. 

The infinitesimal enters mathematics via Zeno’s paradoxes and our solution via calculus.

The  history  of  calculus  apparently  has  these  phases:  (a)  Zeno’s  paradoxes  and  the

ancient solution of exhaustion, where Aristotle helped Euclid to evict Democritus’s atom

from the notion of space itself, such that points have no size and lines have no width, (b)

Newton  and  Leibniz  with  infinitesimals,  (b)  Euler  and  Lagrange  with  algebra,  (c)

Weierstraß  with  e  and  d.  Boyer  (1949)  clarifies  that  Leibniz  used  all  methods  in

somewhat  confusing  ways  so  that  he  cannot  be  claimed  for  one  particular  direction.

Taking this history into account, my reading of the current literature anno 2011 is:

(a)  Logic  leads  to  the  algebraic  approach,  but  extended  with  a  proper  manipulation  of

the  domain  (see  below  for  some  indications  and  otherwise  the  proper  discussion  in

“Conquest of the Plane” (2011:221-230)). Hence the infinitesimal doesn’t have value for

the derivative, but may have value for the understanding of the continuum. For teaching

at highschool it  is  valuable that pupils and students develop a proper number sense and

understand  reports  from  the  calculator.  Mathematics  needs  a  good  theory  of  number

while there still seems to exist some confusion, in particular in education. (Pure theorists

often focus on the Dedekind cut but highschool uses decimals.)

(b)  Non-standard  analysis  revives  the  infinitesimal.  Part  of  the  intuition  seems  correct:

both  for  the  number  sense  and  the  dislike  of  the  Weierstraß  method.  However,  non-

standard  analysis  apparently  still  confluates  didactic  issues  on  the  number  line  with

didactic  issues  on  the  derivative,  and  this  needlessly  complicates  didactics.  This

combination  makes  papers  on  non-standard  analysis  hard  reading  too.  Their  neglect  of

the algebraic approach is unwarranted.
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The  combination  of  the  various  results  cause  a  program “Neoclassical  mathematics  for

the schools” (2011). 

To  emphasize  the  tentative  character  of  this  paper  the  best  introduction  is  the

autobiographical route how I got here.

1.2  ALOE, EWS and COTP

1.2.1  A base in logic

Colignatus (1981, 2007, 2011) A Logic of Exceptions (ALOE) was written in 1980-1981,

shelved for 25 years, and retyped and published in 2007, with now a ‘second edition’ in

2011. ALOE solves the Liar  paradox, Russell’s  set  paradox and Gödel’s misconception

with respect to the Gödeliar. It uses three-valued logic and solves the paradoxes of three-

valued logic.

I have always been sensitive to history. Originally I intended to study archeology but the

horror of Biafra caused me to switch to econometrics to solve such world problems - and

then see  DRGTPE (2011a).  A good book in  history  will  still  draw my attention  and in

this manner ALOE contains many references to the history of logic. It was only because

of reading Bochenski (1956, 1970) that I came across Paul of Venice and an approach to

resolve Russell’s paradox.

Russell’s  set  is  R  ª  {y  |  y  –  y}.  This  definition  can be diagnosed as self-contradictory,

whence  it  is  decided  that  the  concept  is  nonsensical.  Using  a  three-valued  logic,  the

definition is still allowed, i.e. not excluded by a Theory of Types, but statements using it

receive  a  truthvalue  Indeterminate.  An  example  of  a  set  similar  to  Russell’s  set  but

without  contradiction  is  the  set  S  =  {y |  y –  y  fl  y œ  S  },  which definition  uses  a small

consistency condition, taken from Paul of Venice, see ALOE p127-129. 

PM. Merely writing S = {y ∫ S | y – y} might convey the impression that this is a mere

choice while  it  isn’t.  The  notation  S  = {y |  y –  y  fl  y œ  S  }  clarifies  that  S  –  S derives

from logic and is not an arbitrary choice. As explained in ALOE:129 the notation S = {y

|  y –  y  fl  y œ  S  }  has  the  disadvantage that   y œ  S  ñ  (y –  y  fl  y œ  S)  or  a ñ  (b fl  a)

which puristically leaves y œ S in the air (or infinite regress). As explained in ALOE:129

a more complex expression is S = {y |  ((y ∫ S) fl (y – y)) fi ((y = S) fl (y – y fl y œ S

))}. The expression with the consistency criterion seems adequate as a shorthand for the

complexer full statement.

1.2.2  Cantor’s Theorem

Using a similar consistency criterion for Cantor’s Theorem on the power set we find that

its proof collapses. This allows us to speak about a ‘set of all sets’ (unless we would find

some  other  contradiction).  Below  we  also  reject  the  diagonal  argument  on  the  real

numbers. ALOE in 2007 still  allowed the diagonal argument for  the reals  only but now

in 2011 and its ‘second edition’ I find that the set of real numbers � is as large as the set

of  natural  numbers  �.  My  knowledge about  Cantor’s  transfinites  is  limited  to  DeLong

(1971) and popular  discussion  like Wallace  (2003).  Nevertheless  it  seems possible  (see
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below)  to  reject  the  theorem  on  which  they  are  based  -  and  possibly  also  their  link  to

infinitesimals.

To  be  exact:  ALOE 2007  still  accepted  Cantor’s  diagonal  argument,  i.e.  the  power  set

theorem  only  for  the  infinite  set  of  natural  numbers  �,  so  that  �  was  taken  as  non-

denumerable.  This  acceptance  was  based  upon  the  exposition  in  DeLong  (1971).

However, reading Wallace (2003) in the Summer of 2007 it  appeared, in hindsight, that

DeLong  only  presents  the  diagonal  argument  sec  and  does  not  present  a  proof  of  the

power  set  theorem  proper.  To  be  exact:  DeLong  (1971:78)  explicitly  states  that  he

doesn’t  prove Cantor’s  theorem and Wallace  (2003:275)  gives a  proof.  Had I seen that

latter proof before in the context of my logical studies, I would have noted its relation to

Russell’s  set  paradox sooner,  and ALOE would have been a  bit  more guarded,  like the

‘second  edition’  now  is.  It  may  actually  be  that  I  had  seen  the  proof  in  an  earlier

standard course in  mathematics, as we students  in econometrics  in  Groningen had joint

courses in mathematics with students in mathematics, physics and astronomy. But then it

must not have left much of an impression. What happened in 2007 was that the rejection

of  Cantor’s  general  argument  got  included  into  ALOE but  the  diagonal  argument  was

still  accepted. I have never been much interested in numbers or the infinite so perhaps I

may be  excused  for  this  circuitous  route.  Indeed,  my picking  up  of  Wallace  (2003)  in

2007  is  only  from  a  book-sale  and  the  lazy  season  of  the  middle  of  Summer.  Which

season became a bit less lazy than hoped for.

1.2.3  From ‘paradoxes of division by zero’ towards the continuum

1.2.3.1  Origin in 2007

Retyping ALOE in 2007 also got me to look into the ‘paradoxes of division by zero’. My

first  step  was  to  distinguish  between  the  noun  of  static  division  x  /  y,  and  the  verb  of

dynamic  division  x  //  y,  where  the  latter  also  allows  algebraic  simplification  with

suitable manipulations of the domain. Once I had formulated that, my thought was: “Oh

my,  this  also  reformulates  calculus,  oh  horror,  why  do  I  have  to  see  this,  this  means

another section,  am I really expected to develop this,  and have all  this discussion about

all those ages of development of calculus ?”. 

Elegance  with  Substance  (2009)  (EWS)  collected  and  integrated  the  tidbits  that  I  had

observed over the years in the education in mathematics. It presents  mathematics not as

immutable  but  rather  as  a  science  and  an  art.  Hence  I  tend  to  agree  with  Michael  J.

Crowe (1988) Ten Misconceptions about Mathematics and Its History.

It  appeared  that  EWS  could  be  implemented  in  a  textbook  format  and  this  became

Conquest  of  the  Plane  (2011)  (COTP)  -  actually  a  primer  in  a  textbook  format.  ALOE

p240-242  thus  provides  a  new  way  to  develop  the  derivative,  in  three  pages  on  the

paradoxes  from  division  by  zero.  EWS  p87-92  extends  this  explanation  that  “the

derivative  is  algebra”,  and  COTP  extends  it  by  developing  calculus  itself.  See  COTP

p48+ and in particular  p57 for an extended clarification  of the difference between / and

//.  Thus  ALOE,  EWS  and  COTP  develop  the  derivative  without  the  use  of  limits  of

infinitesimals. 
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PM.  Discussion  about  COTP  resulted  in  Colignatus  (2011e)  Reading  Notes,  of  which

this present paper has been given a life of itself, intended as a ‘mathematical paper’.

1.2.3.2  History via Boyer

COTP  however  contains  much  less  historical  discussion  than  ALOE.  I  have  now  read

Boyer (1949) - an excellent study as far as I can judge - to see what might be usefully be

included  in  a  future  edition.  A  first  conclusion  is  already  that  no  corrections  are

required.  Boyer (1949:13)  also  provides  us  with  a  fine  quote  that  suggests openness  of

mind towards new approaches on the derivative: 

“Mathematicians  now  feel  that  the  theory  of  aggregates  has  provided  the  requisite

foundations  for  calculus,  for  which  men  had  sought  since  the  time  of  Newton  and

Leibniz.  It  is  impossible  to  predict  with  any  confidence,  however,  that  this  is  the  final

step in the process of abstracting from the primitive ideas of change and multiplicity all

those  irrelevant  incumbrances  with  which  intuition  binds  these  concepts.  It  is  a  natural

tendency  of  man to  hypostatize  those  ideas  which  have  great  value  for  him,  but  a  just

appreciation  of  the  origin  of  the  derivative  and  the  integral  will  make  clear  how

unwarrantedly  sanguine  is  any  view  which  would  regard  the  establishment  of  these

notions as bringing to its ultimate close the development of the concepts of the calculus.”

Indeed,  Boyer  provides  some  links  to  the  algebraic  view  of  the  derivative  in  ALOE,

EWS and COTP: 

(a)  Boyer  p  217-218  quotes  Leibniz  explaining  to  Bayle  in  a  letter  of  1687:  “the

difference is  not  assumed to be zero until  the calculation  is  purged as far  as is possible

by  legitimate  omissions,  and  reduced  to  ratios  of  nonevanescent  quantities,  and  we

finally come to the point where we apply our result to the ultimate case”. This is exactly

what I propose to do, with the added clarity of the manipulation of the domain, and some

other subtleties in ALOE, EWS and COTP (best take the latter). Apparently Leibniz also

had other explanations but this is the algebraic approach. 

Boyer comments: “ostensibly by virtue of the law of continuity.  Thus even in the work

of Leibniz the idea of a limit was implictly invoked”. But this is a nonsequitur. You can

develop the derivative with limits  but you don’t have to.  Issues of continuity and limits

are different  subjects  that relate to the construction of � and its functions.  Switching to

those is a change of subject. The formula x2  can be manipulated as formula, whether its

domain is � or �. The crucial point for the derivative is the logic of excluding zero from

the domain, then (after algebraic simplification) include it, then restrict the domain to it.

The  manipulative sequence  on the  domain �  \  {0},  �,  {0}.  If there  are  issues  with  the

domain due to pathological cases then the pathology requires attention and not the basic

definition  of  the  derivative.  Mathematicians  are  trained,  when  mention  is  made  of  the

derivative,  to  immediately  think  about  limits  and  continuity,  but  they  must  untrain

themselves to do so (comparable to quitting an addiction).

Also,  Bolzano’s  example  of  a  continuous  but  nondifferential  function  (Boyer  p  269)

falls apart when we see that the derivative is not quite a slope but actually the change in
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surface.  For  example  |x|’  at  x  =  0  is  0.  Also,  Weierstraß’s  example  of  such  a  function

(Boyer p285) can be seen as pathological because of its infinite sum, while its derivative

can  be  determined  algebraically,  and  numerically  might  be  infinite  in  the  sense  of

vertical rather than non-existent.

(b)  Boyer  p  236  mentions  Landen  1758  The  Residual  Analysis.Apparently  Landen

missed the manipulation of the domain. Boyer criticizes him that he lacked the notion of

limit. This however is the same misconception as discussed under (a). 

(c)  Boyer  p  251,  260  mentions  Lagrange’s algebraic  approach,  both  in  1772 and 1797.

Again there is the criticism on continuity and limit, as discussed under (a). My comment

would be that Lagrange’s use of the Taylor expansion is needlessly complex, and that a

simple definition suffices.

Useful for an understanding of Lagrange’s method appear to be Fraser (1987) and Fraser

(1989),  see  also  his  website,  and  Schremmer  &  Schremmer  (1989),  see  also  Alain

Schremmer’s  website,  also  on  the  teaching  experience.  The  difference  between  my

suggestion of  df/dx  =  {Df  //  Dx,  set  Dx  = 0} and Lagrange’s approach (apart  from 90%

overlap):

(i) the former manipulates the domain, while the latter doesn’t,

(ii)  the  former  is  happy  with  the  step  on  the  first  derivative,  while  the  latter  continues

with the Taylor expansion, 

(c) the former interpretes with the change in surface, while the latter interpretes with the

slope,

(d) Lagrange doesn’t  have knowledge of the historically  later  numerical  approach and I

allow that this might be needed for extension to cases beyond the basic algebraic case. 

1.2.3.3  Non-standard analysis

ALOE as a book on logic thus contains two different links to analysis and the derivative.

Apparently Gödel’s  ‘results’  link up with non-standard analysis.  As I explain  in ALOE

p243:  “I  find  it  impossible  to  say  anything  about  this  [non-standard  analysis]  since  I

have not studied non-standard analysis and don’t have the time to study it.” I now have

had  a  few hours  to  look at  it.  After  a  cursory  look I  think  that  it  is  not  my cup  of  tea.

Nevertheless,  it  seems  that  a  clear  rejection  of  infinitesimals  might  be  possible.  There

seems to be a way to save them with a different notion of limit but why would you do so

if  the  derivative  can  already  be  formulated  in  algebraic  manner  ?  It  turns  out  however

that some aspects may be useful to resolve didactic issues on the real number line.

1.3  The continuum as an actual infinite

A friend  cleaning  up  her  bookcase  in  2011  gave  me  Aczel  (2000)  The  mystery  of  the

Aleph.  Kronecker  was  against  Cantor’s  approach.  These  accounts  however  do  not

develop  particular  counterarguments  to  Cantor’s  Theorem  or  objections  against  the

paradoxical nature of ‘the’ proof. There is Kronecker’s suggestion that mathematics uses
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the potential infinite and philosophy the actual infinite. But the continuum in the interval

[0,  1]  presents  an  actual  infinity  of  points,  and  when  we  study  this,  why  not

mathematically ? Perhaps Kronecker  was happy with the Dedekind cut,  but this at least

neglects  didactic  issues  on  the  real  number  line,  and  quite  possibly  does  not  really

resolve the mathematical issue.

Boyer  apparently  equates  the  term  “discrete”  with  �.  For  me,  however,  “discrete”  is

equated with a finite subset of �. Below we will see that there is a bijection ‘in the limit’

between � and �, so that both sets represent the continuum. 

Boyer p293-294 curiously  states:  “From the  definitions  of  number given above,  we see

that  it  is  not  magnitude  which  is  basic,  but  order.  (...)  The  derivative  and  the  integral,

although still defined as limits of characteristic quotients and sums respectively, have, as

a result,  ultimately become, through the definition of number and limit, not quantitative

but ordinal concepts.” Thus is repeated by p 298 “How startling apropos, with respect to

the  development  of  the  calculus,  is  the  Pythagorean  dictum:  All  is  number  !”  And  the

conclusion  in  309:  “The  history  of  the  concepts  of  the  calculus  shows  that  the

explanation of the qualitative is to be made through the quantitative,  and the latter  is in

turn  to  be  explained  through  the  ordinal,  perhaps  the  most  fundamental  notion  in

mathematics.”

This  type  of  reasoning  is  curious  since  ‘magnitude’  could  be  equated  to  ‘order  ad

infinitum’,  and  hence  there  still  is  an  essential  difference  between  the  finite  and  the

continuum.

Boyer’s focus on continuum and limits derives from the historical focus on them, i.e. the

development  towards  Weierstraß  as  the  lastest  stage,  and  from  the  neglect  of  the

potentials of the algebraic approach. My proposal is a revival of the algebraic stage. The

derivative  and  integral  are  algebraic  concepts,  and  only  become  quantitative  when

numerical values are assigned to them. 

1.4  Hence, groundwork for others

The  literature  on  number  theory  and  the  infinite  is  huge  and  that  my  knowledge  is

limited  to  only  a  few  pages  (that  summarize  some  points  of  that  huge  literature,

however). My only angle for this present paper is the insight provided in ALOE on some

logical relationships,  plus two new books of mine since 2007 that focus on mathematics

and its education.  Given the existence of that huge literature  still  unknown to me I thus

have  my  hesitations  about  expressing  my  thoughts  on  this  subject.  When  I  read  those

summaries then it might be considered valid however that I do so, since in essence I only

express this logical angle. 

With  the  books  ALOE,  EWS  and  COTP  I  feel  at  ease  since  I  developed  the  subjects.

This present  paper is  more tentative  since I only looked cursorily  at number theory and

non-standard analysis.  The  aim of  this  paper  thus  is  to  express  these  insights  such that

possibly  a  person  more  at  home  in  number  theory  and  the  infinity  and  non-standard

analysis reconsiders  that latter  literature  while taking along the insights in ALOE, EWS

and COTP.
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We use Q = 2 p. 

2.  Cantor’s Theorem in general

See ALOE p238-240 for the context.

Cantor’s Theorem holds that there is no bijection between a set and its power set (the set

of all  its  subsets).  For  finite  sets  this  is  easy to  show (by mathematical  induction).  The

problem  now  is  for  infinite  set  A  such  as  the  natural  or  real  numbers.  The  proof  (in

Wallace  (2003:275))  is  as follows.  Let  f:  A  Ø  2A  be the hypothetical  bijection  between

(vaguely defined ‘infinite’) A and its power set. Let F = {x œ A | x – f[x]}. Clearly F is a

subset  of  A  and  thus  there  is  a  j  =  f -1[F]  so  that  f[j]  =  F.  The  question  now  arises

whether j œ F itself. We find that j œ F ñ j – f[j] ñ j – F which is a contradiction.

Ergo,  there  is  no  such  f.  This  completes  the  current  proof  of  Cantor’s  Theorem.  The

subsequent discussion is to show that this proof cannot be accepted.

In the same line of reasoning as with Russell’s set paradox, we might hold that above F

is  badly  defined  since  it  is  self-contradictory  under  the  hypothesis  that  there  is  a

bijection.  A  badly  defined  set  cannot  be  a  subset  of  something.  A  test  on  this  line  of

reasoning is to insert the similar small consistency condition, F = {x œ A | x – f[x] fl x œ

F}.  It  will  be  useful  to  reserve  the  term  F  for  the  latter  and  use  F’  for  the  former

inconsistent definition. Now we conclude that j – F since it cannot satisfy the condition

for membership, i.e. we get j œ F ñ (j – f[j] fl j œ F) ñ (j – F fl j œ F) ñ  falsum.

Puristically speaking, the earlier defined F’ differs lexically from the later defined F, the

first  expression  being  nonsensical  and  the  latter  consistent.  F’  refers  to  the  lexical

description but not meaningfully to a set. Using this, we can also use F* = F ‹ {j} and

we  can  express  consistently  that  j  œ  F*.  So  the  earlier  ‘proof’  above  can  be  seen  as

using a  confused mixture of  F  and F*. (And,  puristically,  the  same “PM” applies  as in

§1.2.1 on  the  Russell  paradox,  so  that  a  puristically  proper  form is  F  =  {x  œ  A fl   x ∫

f -1[F]  |  x – f[x]} but now with the explanation why f -1[F] – F.)

It follows:

  1.  that the current proof for Cantor’s Theorem is based upon a badly defined and 

inherently paradoxical construct, and that the proof evaporates once a sound 

construct is used.

  2.  that the theorem is still unproven for (vaguely defined) infinite sets (that is, I 

am not aware of other proofs). We could call it “Cantor’s Impression” rather 

than “Cantor’s Conjecture” since Cantor might not have conjectured it if he had 

been aware of above rejection.

  3.  that it becomes feasible to speak again about the ‘set of all sets’. This has the 

advantage that we do not need to distinguish ‘any’ versus ‘all’ sets. And neither 

between sets versus classes.

  4.  that the transfinites that are defined by using Cantor’s Theorem evaporate with 
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it.

  5.  that the distinction between � and � rests (only) upon the specific diagonal 

argument (that differs from the general proof) (and it will be discussed below).

When we consider the diagonal argument on � then it appears that we may reject it.

Elwes (2011)  reports  on a  structure  on  infinity  named “Ultimate  L”.  From the  above it

seems that it  would be based upon a misunderstanding and an unwarranted addiction to

two-valued logic instead of the rational choice for three-valued logic. Wu (2011) reports

on  the  mis-education  of  mathematics  teachers  and  I  agree  that  professional

mathematicians should refocus on education.

3.  Cantor’s diagonal argument for the real numbers

3.1  Potential and actual infinite

Aristotle’s  distinction  between the  potential  and the  actual  infinite  is  a  superb common

sense observation on the workings of the human mind. Elements of � and the notion of

repetition  or  recursion  allow  us  to  develop  the  potential  infinite.  The  actual  infinite  is

developed (a) via abstraction with associated ‘naming’ or (b) the notion of continuity of

space  (rather  than  time),  or  intervals  in  �.  While  we  use  the  symbol  �  to  denote  the

natural  numbers, this not merely means that we can give a program to construct  integer

values consecutively but at the same moment our mind leaps to the idea of the completed

whole (represented  by the  symbol �  or  the  phrase  “natural  numbers”),  even though the

latter  seems  as  much  a  figment  of  the  imagination  as  the  idea  of  an  infinite  line.  The

notion of continuity however for say the interval [0, 1] would be a close encounter with

the  actual  infinite.  In the  same way it  is  OK to  use  the  mathematical  construct  that  the

decimal  expansion  of  Q  has  an  infinity  of  digits,  which  is  apparently  the  conclusion

when we use such decimals. The mathematical notion of a limit expresses the leap from

the potential  to  the  actual,  though its  use  and precise  definition  also  appears  to  depend

upon context.

But  it  is  quite  another  thing  to  go  from  these  considerations  to  conclusions  on

‘transfinites’.  I  wholeheartedly  agree  with  Cantor’s  plea  for  freedom  but  mathematics

turns  to  philosophy  indeed  if  there  is  no  necessary  reason  to  distinguish  different

cardinalities  for  � and �. See also Edwards (1988) and (2008). If there is no necessity,

then Occam’s razor applies. Let us see whether there is necessity.

3.2  The diagonal argument

3.2.1  Restatement

Cantor’s  diagonal  argument  on  the  non-denumerability  of  the  reals  �  is  presented  in

DeLong  (1971:75&83)  and  Wallace  (2003:254).  We  assume  familiarity  with  it  and
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quickly restate it. It suffices to assume a bijection between � and � that uses digits di, j:

(1 ~ 0.d1,1d1,2....), (2 ~ 0.d2,1d2,2...) ... etcetera. The diagonal number is nD  = 0.d1,1d2,2....

taken from that list.  A real  number that  cannot be in the list  is nC  = 0.nC,1nC,2....  where

nC,i = 2 iff di,i  = 1, and nC,i  = 1 iff di,i  ∫ 1. For, if C would be the position in the list then

nC,C  =  dC,C  by  definition  of  the  list  and  nC,C  ∫  dC,C  by  definition  of  nC,  which  is  a

contradiction.  Nevertheless,  nC  would  be  a  true  real  number  and  thus  should  be  in  the

list. (QED). PM. We can create an infinity of such points along the diagonal.

I’ve seen this argument in 1980 and considered it at some length, and have done so now

again. In 2007 I still  accepted it.  With some more maturity I can better appreciate some

‘constructivist’ views. One may observe that neither DeLong (1971) nor Wallace (2003)

mentions  those  constructivist  considerations  on  this  proof.  It  would  be  better  if  those

would  be  mentioned  in  summary  statements  since  they  better  clarify  what  is  at  issue.

Curiously  though  I  have  not  found  a  direct  counterargument  yet,  neither  in  papers  on

Kronecker.

PM.  This  argument  generally  attracts  attention  since  there  is  something  fishy  about

taking an element dC,C and redefine it to have another value than it already has. 

Note  that  Cantor  does  not  specify  a  specific  number  C  for  the  diagonal  digit  dC,C.  His

reasoning  is  non-constructive  in  the  sense  that  the  number  cannot  be  calculated.  This

might  be  clarified  by  writing  C  =  ¶  so  that  we  are  discussing  n¶,¶  which  may  be

recognized as  rather  awkward since  the  symbol ¶  generally  stands  for  “undefined”.  In

that  respect  it  is  somewhat  curious  to  allow Cantor  this  freedom to  be  nonconstructive

while requiring for  the below “bijection  by abstraction”  that  an index for  1/3 should be

specified while the abstraction causes that this cannot be done. 

Cantor’s argument is an application of logic that if there is a diagonal then there is a C,

yet  by  abstraction  the  notion  of  a  diagonal  is  not  defined.  Let  us  become  a  bit  more

formal. Let the proposition be p = “There is a (well-formed) diagonal”. Cantor suggests

the  following  scheme:  p  fl  ¬p  ergo  ¬p.  In  the  abstraction  below  we  will  however  see

that the diagonal is  not well-defined so that the true form rather is ¬p  fl  (Cantor’s  p  fl

¬p), which is an instance of the “ex falso sequitur quodlibet” ¬p fl (p fl q) with q = ¬p.

In  other  words,  Cantor  implicitly  uses  that  the  diagonal  does  not  exist  to  prove  its

nonexistence,  which is  begging the question.  This  point  becomes clearer  when we look

at  the  actual  construction  of  �  where  we  will  see  that  the  issue  of  a  diagonal  is  not  a

well-defined question.  That  the notion  of  a diagonal  is  not  well-defined does  not prove

that � is non-denumerable.

3.2.2  Definition of �

The  main  point  resides  with  how we  define  “real  numbers”.  Let  us  actually  define  the

real numbers and proceed from there. It suffices to look at the points in [0, 1] (and others

could be found by 1 / x etcetera). First, let d be the number of digits:

For d = 1, we have 0.0, 0.1, 0.2, ..., 0.9, 1.0.
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For d = 2, we have 0.00, 0.01, 0.02, ...0.09, 0.10, 0.11, 0.12, ...., 0.98, 0.99, 1.00. 

For d = 3, we have 0.000, 0.001, ...., 1.000

Etcetera. Values in � can be assigned to these using this algorithm: For d = 1 we assign

numbers 0, ... , 10. For d = 2 we find that 0 = 0.0 = 0.00 and thus we assign 11 to 0.01,

12 to 0.02, etcetera, skipping 0.10, 0.20, 0.30, ... since those have already been assigned

too.  Thus  the  rule  is  that  an  assignment  of  0  does  not  require  a  new  number  from  �.

Thus for real numbers with a finite number of digits d in � we associate a finite list of 1

+ 10d  numbers in �.

Subsequently, we let d Ø ¶. This creates both � and a map between that � and �. 

Many  mathematicians  seem  to  regard  this  construction  of  �  as  inferior  in  some  sense

and they adopt  the  Dedekind cut.  The  decimal  construction  of  �  rather  is  an existence

proof  and  the  Dedekind  cut  an  abstraction  at  a  later  phase  of  theory.  For  the

development of the number sense we must focus on the decimals anyway so we need a

sound development anyway. Indeed, Gowers (2003) adopts  the decimals  and shows the

creation  of  the  complete  ordered  field  on  �.  Leviatan  (2004)  shows  its  place  in

didactics. Similarly Schremmer & Schremmer (1989), and see Schremmer (2011) for the

notation 1/3 = 0.33 + [...] as a stepping stone for Landau’s o, though see COTP §2.2 on

approximation and rounding off. It is important that the approximation is recorded in the

number and not in the abuse of the equality sign (since º is ambiguous).

PM.  This  definition  of  �  generates  the  same result  as  Gowers  (2003).  He  proceeds  as

follows: “To begin with,  one defines an infinite  decimal in the obvious way, as a finite

sequence  of  elements  of  the  set  {0,1,2,3,4,5,6,7,8,9}  followed  by  a  decimal  point

followed by an infinite  sequence  of  elements  of  the  set  {0,1,2,3,4,5,6,7,8,9}.  This  isn’t

quite the whole definition since one must point out that some of these objects are equal:

for  example,  0124.383478...  is  the  same  number  as  124.383478...  (assuming  of  course

that the sequences continue in the same way) and 1.9999999... is the same number as 2.

(About  this  last  example,  by  the  way,  there  can  be  no  argument,  since  I  am  giving  a

definition.  I  can  do  this  in  whatever  way  I  please,  and  it  pleases  me  to  stipulate  that

1.999999...  =  2  and  to  make  similar  stipulations  whenever  I  have  an  infinite  string  of

nines.)  That  defines  the  set  I  am  constructing.  To  make  it  a  complete  ordered  field,  I

must now specify  the  ordering,  explain  how to  add  and  multiply  infinite  decimals,  and

prove that the field axioms, order axioms and completeness axiom are all satisfied.” 

3.2.3  Bijection in the limit

Instead of speaking about a bijection it is better to speak about a ‘bijection in the limit’,

if that helps to resolve the paradox and confusion. This is an insight that I do not see in

the  literature.  Perhaps  a  better  term is  ‘bijection  by abstraction’  since  there  are  already

definitions  for  Weierstraß  limit  or  Cauchy limit,  but  the  use  of  the  term ‘limit’  is  also

warranted since it is the same overall domain of discussion.

Definition:  A bijection  b[n]Ø  b  can be said to exist  in the limit  between domain D and

range R, if  for each n  it is a bijection that b[n]: D[n] Ø R[n], and D and R are the limit
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values of these, such that D = limit[n  Ø ¶, D[n]] and R = limit[n  Ø ¶, R[n]]. 

With this definition, � and � have the same cardinal number, � ~ �, in the (new) sense

that  there  exists  a  bijection  in  the  limit.  It  simply defines  away Cantor’s  problem.  The

potential  infinite  is  the process  on 0, 1, 2,  ...  and the actual  infinite  is  the set  �  and the

intervals in �. 

The intention of these terms is to only capture what we have been doing in mathematics

for ages. It is not intended to present something horribly new. It only describes what we

have  been  doing  and  what  has  not  been  described  in  these  terms  before.  It  is  a  new

photograph but at higher resolution, and it allows to see where Cantor was too quick.

First  some  general  comments  and  then  a  reaction  to  possible  misunderstandings

concerning the use of the term ‘limit’.

3.2.3.1  On the interpretation of ‘bijection in the limit’

These are the two observations on the ‘to’ and ‘from’ relations:

(a)  Above  scheme  allows  for  each  element  in  �  to  determine  what  number  in  �  is

associated with it (and it will have a finite number of digits). The main question is what

happens with real numbers with infinite numbers of digits, like 1 / Q or a simple number

like 0.101010... or a truly random sequence. Since we took d Ø ¶, all such numbers are

included in the list.  Our construction apparently is valid for the creation of �. Since we

have a map to � for each value of d, we find ourselves forced to the conclusion that with

the creation of � there is simultaneously the creation of a map between � and �. 

(b)  The  statement  “d  Ø  ¶”  appears  to  be  vague  and  insufficiently  constructive  to  the

effect  we  cannot  pinpoint  a  particular  value  in  �  associated  with  say  1  /  Q.  It  is

paradoxical  that  we  can  decode  a  value  in  �  to  a  particular  number  in  �  but  that  we

cannot  specify  an  algorithm  to  decode  from  Q  to  a  particular  value  in  �.  The

construction with d Ø ¶ apparently introduces vagueness, even though we can infer that

such  a  map  must  have  been  created  since  also  �  has  been  created.  Actually,  it  is  this

very vagueness that  causes that  we have to distinguish between �  and �,  and make the

distinction between counting and measuring. 

(A nonconstructive example is that when someone climbs a mountain between 10 and 12

hours on one day, and descends between 10 and 12 the other  day, that  there must be at

least  one moment when he or she is at the same height at the same time. We know this

without being able to pinpoint the moment exactly.)

This  might  also  be  summarized in  this  manner.  Though  the  name �  suggests  an  actual

infinite,  and  though  the  collection  is  an  actual  infinite,  the  natural  numbers  are  rather

associated  with  counting  and  counting  is  always  the  potential  infinite.  Whence  �

associates  much  better  with  the  actual  infinite  given  by  the  totality  of  �,  which  is  the

continuum,  which  is  measuring.  If  you  look  for  something  in  a  filing  cabinet  or

encyclopedia,  you  might  start  with  A,  and  step  through  all  values,  but  it  is  smarter

(‘measuring’) to jump to the appropriate first letter, etcetera.

An unrepenting constructivist  might want to see a constructive bijection  between �  and

�  and  might  reject  the  vagueness  of  the  ‘bijection  in  the  limit’.  An  eclectic  and
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unrepenting Aristotelian might be happy that both sets have the same ‘cardinal number’,

namely infinity, and that there is no necessity for ‘transfinites’.

3.2.3.2  A misunderstanding due to the standard definition of convergence of sets

There  is  a standard  definition  of convergence of  sets  (SDCS) in set  theory. This  is  that

points which are infinitely often in the sets of the sequence are in the limit set, and that

points which are infinitely often not in the sets are not in the limit. 

Since  �[d]  with  finite  d  does  not  contain  the  irrational  numbers,  the  above  definition

would only generate the following: �[d] = �[d], and d Ø ¶ implies �[d] Ø � (with Ø

the SDCS).

The  problem with  this  is  that  the  construction  of  �[d]  is  such  that  all  combinations  of

digits  are  included,  so that  we actually  have (�[d]  = �[d])  Ø  �,  apparently  in  another

sense than SDCS.

Hence the SDCS is inadequate to describe this phenomenon.

(In  a  discussion,  someone  accepted  that  �  was  created  on  the  left,  indeed,  but  he

rejected  that �  came about  on the right,  since it  ‘ought’ to be 2�,  even though the only

step taken was the simultaneous step of taking d to the countable infinite.)

3.2.3.3  A misunderstanding due to ‘replacement’

One topic of discussion might be that we see the step from finite d to infinity as a ‘mere’

replacement of d by the symbol ¶. This could be a form of algebra. It might be relevant

for  how  our  actual  brains  work.  It  might  be  relevant  for  didactics,  to  suggest  to  some

students who have difficulty understanding what is happening. However, at this point in

the  discussion  there  is  no  developed  algebra  on  such  methods,  and  the  proper

interpretation  still  is,  only,  the  switch  from the  potential  infinite  to  the  actual  infinite,

which is a conceptual jump. 

To clarify the issue, the argument can also be presented without the term ‘infinity’.

(1) Potential form: �[n] = {0, 1, 2, ..., n}

(2) Actual form � = {0, 1, 2, ....}

(3) For every n in � we have �[n] @ �

PM.  The  @ can  be  read  as  ‘abstraction’.  It  records  that  (1)  and  (2)  are  linked  in  their

related  concepts  and  notations.  In  the  potential  form for  each  n  there  is  an  n+1,  in  the

actual  form  there  is  a  conceptual  switch.  The  switch  can  be  interpreted  as  the  change

from counting to measuring. Thus instead of ‘bijection  in the limit’ we can also use the

term ‘bijection by abstraction’.

(4)  �  is  the  set  of  numbers  from  0  and  1.  (A  number  between  0  and  1  is  infinite

sequence  of  digits  not  ending  with  only  9’s;  if  it  ends  with  only  0’s  we  call  it

terminating. This definition can be done without relying on the SDCS.)
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(5) We construct the bijection b[d]: �[d] ¨ �[10d] for d a finite depth of digits.

(6) Definition what it means to have a ‘bijection in the limit’: This means that 

(a) there is a bijection b[d] for domain D and range R, b[d]: D[d] ¨ R[d],

(b) D[d] @ D 

(c) R[d] @ R

Bijection  in  the  limit  can  be  denoted  b:  D  ¨  R  or  D  ~  R.  In  that  sense  D  and  R  are

equally  large.  When  (a)  -  (c)  are  satisfied  then  this  is  also  accepted  as  sufficient  proof

that there is a b even though that b no longer needs to be constructive.

(7) Then we get the scheme:

b[d]: �[d] ¨ �[10d]

make the  conceptual  switch  on  the  left,  �[d]  @ �,  and  then  simultaneously  on

the right, �[m] @ �, for m = 10d :

?:  �  ??  �

Check that indeed � arises: no holes.

(8) Hence: there is a bijection in the limit between � and �.

PM.  The  symbols  @  and  ~  have  been  introduced  directly  and  perhaps  we  can  work

towards  some  rules  on  those,  such  that  we  can  assume  those  rules  and  some  weaker

property to arrive at the same outcome. Some rules seem to be:

((A @ B) & (A ~ C)) fl (C @ B)  applied to  (�[d] @ �) & (�[d] ~ �[m] for some m =

10d) fl (�[m] @ �)

((A @ B) & (A @ C)) fl (B ~ C)  applied to  (�[m] @ �) & (�[m] @ �) fl (� ~ �)

3.2.3.4  A misunderstanding due to changing the definition of @

One reader argued: 

(1) �[d] @ � means that for every n œ � there is an m such that for d > m we have n œ

�[d].

(2) Then �[d] @ � means that for every r œ � there is an m such that for d > m we have

r œ �[d].

(3) The latter however is not true. 

(4) Hence the meaning of a[d] @ a differs for � and � and thus is not well defined.

In reply:  Above, the symbol @ is not  presented in a general  format a[d]  @ a. Only the

expressions  �[d]  @  �  and  �[d]  @  �  are  defined  separately,  where  it  thus  matters

whether  we look at  �  or  �.  The  observation  by the  reader  thus  is  partly  accurate  since
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there  is  indeed  no  general  definition  given  for  a[d]  @  a,  but  it  is  inaccurate  since  it

wants to  impose such a  definition  while it  hasn’t  been given and it  wants  to  read more

than has been written. 

3.2.3.5  In sum

Here ends the formal deduction. The interpretation is:

(i) The decimals in [0, 1] can be constructed via a loop on d, the depth of decimals, and

then  the  infinite  application  using  countable  infinity.  This  is  not  radically  novel.  The

distinction  between potential  and actual  infinity is given by Aristotle,  and everyone has

been aware of a sense of paradox.

(ii)  Due  to  Cantor  people  have  started  thinking  that  the  loop  would  require  ‘higher’

infinity.  Cantor’s  arguments  however  collapse  in  three-valued  logic  (and  his  universe

has strange beasts anyway).

(iii)  The concept of ‘bijection  in the limit’ or ‘bijection  by abstraction’  helps to get our

feet on the ground again. The potential  infinite  can be associated with counting and the

actual infinite can be associated with the continuum. Clarity restored.

(iv) The clarity actually arises by taking the paradox of the relation between the natural

numbers and the continuum as the definition of ‘bijection via abstraction’. (The paradox

is that for each d we have 10d  decimal numbers but for d Ø ¶ we lose identification.)

(v) To avoid confusion in discussion: � is “countably infinite” in all approaches, also via

abstraction.  �  is  “uncountably  infinite”  in  Cantor’s  view  but  “countably  infinite  by

abstraction” according to this paper. For � we might drop the “via abstraction” but for �

we might include it for clarity. We may also say that � is “Cantor uncountably infinite”

for clarity.

3.2.4  The fallacy of composition

When  we  consider  a  real  value  with  an  infinite  number  of  digits,  like  Q  or  a  simple

number like 0.101010... or a truly random sequence, we employ the notion of the actual

infinite.  Instead,  with  above  definition  and  construction  of  �  we  employ  the  potential

infinite. When we combine these notions then we make the fallacy of composition. 

It is not quite proper to ask for the value in � for Q in the list generated for �, if Q is still

in  the  process  of  being  built  up  as  an  element  in  �.  By  taking  the  limit  we  get  �,

including  Q,  but  taking  the  limit  apparently  also  means  that  we  resign  constructive

clarity.

Stating “d Ø ¶” means a ‘leap of faith’ or rather a shift of perspective from the potential

to the actual infinite. Rather than counting 1, 2, 3, we shift to the set of natural numbers,

�,  and  the  name “the  natural  numbers”  refers  to  that  actual  infinite.  When  we use  that

symbol  then  this  does  not  mean  that  we  actually  have  a  full  list  of  all  the  natural

numbers. We only have the name. The shift in perspective is not per se ‘constructive’. 
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3.2.5  Whence the rejection of the diagonal argument

What  about  Cantor’s  diagonal  argument  ?  Apparently  it  suffers  from  that  fallacy  of

composition. The list of numbers in � is created in the manner of a potential infinite but

the diagonal proof suggests that they can be accessed as actual infinites.

Above, for each d in the list we might try to take a diagonal but the numbers are not long

enough. For d = 2 we already get stuck at 0.01. Supposedly though we could extend the

numbers  with  a  sufficient  length  of  zero’s.  Creating  a  new number  based  upon  such  a

diagonal number would not be proper since it conflicts with the situation defined for that

particular  value  of  d.  If  we  let  d  Ø  ¶  then  there  is  no  well-defined  manner  to  take  a

diagonal. 

At  this  point,  you  might  already  want  to  look  at  the  table  in  §3.2.7  below  that

summarizes the points of view.

Cantor’s  argument  has  this  structure:  “Suppose  that  there  is  a  list,  then  there  is  a

diagonal, then a new number is created that cannot be on the diagonal. Hence there is no

such  list,  hence  real  numbers  are  not  denumerable.”  But  the  above  showed  that  there

must be a  list,  that  comes about  alongside with  the creation  of �  itself.  The alternative

conclusion  with  respect  to  Cantor’s  argument  is  that  it  is  improper  to  use  a  ‘diagonal’

since  it  is  not  well-defined  and  does  not  exist.  The  mutation  rule  on  the  ‘diagonal’  is

rather  a  waiting  rule  than  a  number  creation  rule.  The  numbers  are  in  the  list  at  some

point,  and do not  have to  be created  anew. We only have to  go from one value of  d  to

another value of d to let the mutated number appear (up to the required value of d). For

example, if d = 2 and the ‘diagonal’ stops at 0.01, and the mutated number becomes 0.12

then we move up the list and find it somewhere.

The unrepenting constructivist  (a third  point of view in this  discussion)  who rejects  the

usefulness  of  the  ‘bijection  in  the  limit’  and  who  wants  to  see  a  constructive  bijection

such that we can calculate the proper number for 1 / Q, would still stick to a constructive

approach  for  the  diagonal.  Cantor’s  proof  assumes  a  diagonal  but  rather  that  diagonal

would  be  created.  While  it  is  constructed,  at  the  same  time  the  mapped  value  of  the

diagonal is created, and then it appears that it could not be created since it is inconsistent

that nC,C = dC,C by definition of the list and nC,C ∫ dC,C by definition of nC.

3.2.6  Cantor’s original argument of 1874

The  syllabus  on  set  theory  by  Hart  (2011)  opens  on  page  1  with  Cantor’s  original

argument  on  nondenumerability,  which  argument  he  later  improved  upon  with  the

diagonal argument. 

The original argument of 1874 suffers the same fallacy of composition. The formulation

of  the  theorem assumes that  �  is  built  up in  the  manner  of  a  potential  infinite,  but  the

proof uses that all elements are actual infinites. Instead, the proof can only use numbers

up  to  a  certain  digital  depth  d,  and  create  the  full  construction  only  alongside  the

construction of � itself.

(When  the  limit  of  d  is  taken  both  for  �[d]  and  the  associated  intervals  a[d]  and  b[d]

then  there  arise  curious  questions.  Regard  for  example  the  series  with  limits  a  =
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0.9999...  and  b  =  1.000....  It  is  common  to  conclude  that  a  =  b  so  that  there  is  no  h

inbetween. See also the below.)

See the Appendix for a longer discussion to show where Cantor went wrong.

3.2.7  A summary of the differences 

Given the onslaught since 1874 (if not earlier with Zeno’s paradoxes) it may be useful to

put the different approaches in a table.

Topic Cantor ALOE, EWS andCOTP HOccamL

Logic two- valued three - valued

Cantor ' s Theorem Accept Reject, like with Russell ' s paradox

Potential &Actual¶ Commits the fallacy of composition Proper distinction

Diagonal Assumption causes rejection Is not defined in potential form

Mutation rule Creates a new number Waiting rule

Bijection Impossible to create In the limit

Cardinality � < � � ~ �

In  the  latter  view  the  following  statements  mean  precisely  the  same:  (i)  the  shift  in

perspective  from potential  infinity  to  actual  infinity  (other  than  a  mere  name:  thus  the

continuum), (ii)  the  imagination of  the  continuous  interval  of  [0,  1],  (iii)  regarding this

imagination as a constructive act (for geometry), (iv) accepting this to be what we mean

by a  bijection  in  the  limit  between  �  and �,  (v)  the  specification  of  what  we mean by

‘taking the limit’ in this instance.

3.2.8  Conclusion on the continuum

As holds for evolutionary biology where we tend to forget what ‘deep time’ is,  we may

forget  for  the  natural  numbers  what  infinity  really  means.  The  googol  is  10^100.  Let

g[n] = n^...^n with n times ^. For example g[2] = 2^(2^2) = 16. Try g[googol], or apply

g  a  googol  times  to  itself,  as  in  g[...  g[googol]...].  These  are  just  small  numbers

compared to what is possible.

The  unrepenting  constructivist  has  a  strong position  and  might actually  be  right.  There

might be theoretical advantages to assume a continuity with a higher cardinality than the

set  of natural  numbers. Instead of getting entangled in logical  knotts we might also use

Occam's  razor  and  assume  the  same  cardinality.  Above  considerations  on  ‘bijection  in

the limit’ would support the latter.

The main reason to accept the diagonal argument and thus different cardinal numbers for

� and �  is rather not ‘mathematical’ but ‘philosophical’.  Kronecker’s suggestion to use

the  actual  and  potential  infinities  as  the  demarcation  is  not  convincing.  It  is  rather  on

how those are applied. The demarcation remains depending upon necessity. Attributed to

Occam: “entia non sunt multiplicanda praeter necessitatem”
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4.  Non-standard analysis

4.1  Introduction

ALOE, EWS and COTP develop calculus without infinitesimals or limits. Taking a limit

is  paradoxical  since  zero  is  excluded  while  it  is  precisely  the  value  of  interest.  Boyer

(1949:236)  states  that  D’Alembert had a  limit  concept  “supposed to  be attained  instead

of  a  terminus  which  can  be  approached  as  closely  as  desired”.  This  is  not  the  current

concept  of  the  limit,  and D’Alembert’s  approach  does  not  help  for  the  derivative  if  we

don’t manipulate the domain.

Consider  this  age-old  issue:  Average  speed  is  defined  as  covered  distance  divided  by

lapsed time. For speed at a particular moment in time this definition does not help, since

the value of lapsed time is  zero and we cannot divide by zero. Thus speed or motion at

each moment in time ‘do not exist’,  Parmenides would argue. Rather than taking limits,

that  still  exclude  zero,  it  seems  better  to  see  instantaneous  speed  as  a  conditional,  e.g.

when  you  sling  a  stone  and  at  one  moment  release  it  so  that  you  can  determine  the

(average)  value  that  then  shows  itself.  The  latter  conditionality  of  course  only  holds

when you want to continue to think in terms of average speed. Calculus then proceeds by

seeing speed as a function of time itself.

In ALOE, EWS and COTP I hadn’t any knowledge about non-standard analysis but now

in this article I have had a few hours to look at it and perhaps I can say that I now have

an  infinitesimal  amount  of  knowledge about  it.  (This  is  a  pun.  I  mean a  very  little  bit,

that might be shown even smaller than I think it is.)

Some of Zeno’s paradoxes concern infinite divisions. Space can be divided infinitely (at

least conceptually)  but can we do so with matter too ? Democritus’s notion of the atom

somehow was transferred  into the ‘modern notion of the infinitesimal’.  Some think that

this ‘modern notion’ is well-defined. I wonder.

An Euclidean point  has no extension or size, only position.  Taking a line means a shift

in  dimension.  A  plane  adds  another  dimension.  These  are  shifts  in  perspective  and  not

nessarily  issues  in  arithmetic.  A line  has  an  infinity  of  points,  but  an  infinity  of  points

might still have extension or size zero. Could we define new concepts and develop some

arithmetic ?

The term “infinitely small” causes me to think that this is rather undefined. Thus for me

1 / ¶ is undefined (and likely should not be equated with 0). But some authors seem to

think otherwise. Let us try at a definition.

4.2  A possible definition of “infinitesimal”

Above  definition  of  �  in  §3.2.2  used  numbers.  A  number  has  no  length.  An  infinity

times zero still allows us to go from � to �, or ¶ * 0 = 1, we call this “taking the limit”,
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and we see this as a shift  in perspective.  This  is not  arithmetic  but one type of limiting

process. We can conceive of an other kind of limiting process, not based upon numbers

but based upon the lengths that they represent.  This is closely related to preconceptions

of the continuum. Following Katz & Katz (2011), C.S. Peirce called the first approach in

§3.2.2 “pseudo-continuum” and the latter, that we consider now, the proper “continuum”.

In above construction  of  �  for  each d  there  is  a  smallest  nonzero  number that  we now

call  length e[d]  = 10-d .  A series  is  0.1,  0.01,  0.001,  ....  Each number in  that  series  is  a

small  stretch  of  length  from  0  to  that  number,  such  that  addition  with  other  lengths

eventually gives the unit interval [0, 1]. In general  e[d] * 10d  = 1. If we write Limit[d Ø

¶, 10d] = ¶ still for number, then we may write LengthLimit[d Ø ¶, 10-d] = 1 / ¶ > 0

for length, and maintain the form (1 / ¶) * ¶ = 1. We can call 1 / ¶ “infinitely small” or

“infinitesimal”. Possibly we might use labels a and w but rather keep those available for

other  uses.  Then  ¶  suffices  as  long  as  the  context  is  clear.  If  there  is  a  term  for

“infinitely  large”  then  in  this  manner  it  would  make  some  sense  to  think  about  the

“infinitely small” that would not be quite zero. Crucially, ¶ would not yet be a number

in � and thus 1 / ¶ not a number belonging to � either. Is a new kind of number, say a

‘process indicator’, which generates a space � × {1 / ¶}. If we say that x is infinitesimal

we mean that x becomes infinitely small, so that ‘is’ = ‘becomes’ for this process, since

the idea of a process is its ‘becoming’.

A  possible  notation  might  be  1  /  ¶  =  0.00...001.  The  ellipsis  “...”  can  be  ambiguous

since  it  might  indicate  a  finite  list  of  zero’s.  Now  it  would  indicate  an  infinite  list  or

process.  There  is  ambiguity again when H1 ê¶L2  =  0.00...001 = 1 /  ¶  again.  See below

for a longer discussion.

The earlier transformation in §3.2.2 of the potential infinity of � to the actual infinity of

the continuum � might be seen as based upon a wrong concept of limit, and based rather

upon the small stretches of length e[d] that already presuppose the continuum. From this

perspective a number itself has length 0 and an infinity times zero would still amount to

zero or ¶ * 0 = 0. With this new LengthLimit we now cannot take 1 / ¶ = 0 since then

we would have 0 = 0 * ¶ = (1 / ¶) * ¶ = 1. Thus 1 / ¶ as a process indicator cannot

quite  be  compared  to  0.  We  thus  still  apply  methods  of  potential  infinity  but  perhaps

some algebra of this type of actual infinity might be developed (as non-standard analysis

apparently does).

Boyer  (1949:170-171):  “Wallis  [1656]  for  his  part  said  that  1  /  ¶  represented  an

infinitely  small  quantity,  a  non-quanta.  A  parallellogram  whose  altitude  is  infinitely

small or zero is therefor “scarcely anything but a line”, except that this line is supposed

“extensible, or to have such a small thickness that by an infinite multiplication a certain

altitude  or  width  can  be  acquired”.  Such  thickness  indeed  suggests  another  dimension

next to � as defined in §3.2.2.

Robinson’s development of non-standard analysis apparently indeed develops a different

space *� (see Davis & Hersh (1980)). We might also regard a definition along the lines

of Weierstraß, and now taking „ œ �:

Possible definition:  A real number „ > 0 is infinitesimal iff  "  e  > 0 with "f: e  ∫ f[„], it
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holds that e r „ > 0. 

The reference to the function f  establishes  that „  and e  are independent  for otherwise it

would  be  simple  to  take  e  =  „2  and  show an  inconsistency.  With  this  definition  it  still

holds  that  „2  <  „  but  this  does  not  invalidate  the  definition  or  concept.  A  possible

interpretation is to think of „ as a variable on the domain in � which turns the issue into

algebra. The crucial point would be that the variable would not get assigned a particular

value  because  then  it  would  be  possible  to  find  a  lower  point  -  yet  this  would  use  the

information about its value and thus violate the condition on the independence. It would

still  seem  simpler  to  just  write  1  /  ¶  instead  of  „  or  0.00...001.  Above  possible

definition on „  however helps us to ask whether a process  might still  not  be thought of

as belonging to �.

(The  interpretation  of  „  as  a  variable  and  the  switch  to  algebra,  to  be  used  for  the

derivative, however loses from the algebraic approach in ALOE, EWS and COTP for the

derivative.  We  only  discuss  the  real  number  line  here.  While  such  definitions  seem

conceivable, it  does not strike one as a bedrock foundation for  calculus.It  still  excludes

the value of zero that is precisely relevant at the point where the derivative is taken.)

4.3  Where to put the dots ?

In  the  definition  of  �  in  §3.2.2  we  still  seem  to  have  some  freedom  to  place  dots.

Suppose that we take the liberty to write down the ‘end-digits’ as well. Then 1/¶ would

not be just a process but it can be included in the list and thus appear part of �. Well, it

is  a  paradoxial  subject.  On  this  notation,  see  also  Ely  (2010:129-137),  Katz  &  Katz

(2009:10-11)  (though  with  0.00...001  for  finite  digits  and  Lightstone’s  semicolon  for

infinity) and the discussion in §4.7 below. (PM. The text editor is Mathematica, and the

table format apparently does not allow to connect the dots since this new number format

is not recognized. But 0 = 0.00...00 etcetera.)

0 = 0.0000 ... 00 000

1 ê¶ = 0.0000 ... 00 001

...

a = 0.4999 ... 99 999

b = 0.5000 ... 00 000

...

g = 0.9999 ... 99 999

1 = 1.0000 ... 00 000

In  the  standard  view  a  =  b  and  g  =  1.  The  proof:  10  g  =  9.999...  hence  (10  g  -  g)  =

(9.999 - g) or 9 g  = 9 or g  = 1. This assumes that we can do such arithmetic with such

numbers  that  have  the  ellipsis  0.999....  The  advantage  is  here  that  1/3  =  0.999...  /  3  =

0.333...

However, if we take the liberty to write the ‘end-digits’ for still  an infinite process then

there is a difference of 1 / ¶. In that case 1/3 cannot be found in above list.

The  issue  is  related  to  the  notion  of  ‘density’.  The  continuum would  be  ‘dense’  to  the

effect  that between each two numbers there is a third number. If we write 0.9999... and
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1.000...  then  there  would  be  no  number  inbetween  and  the  two  strings  of  digits  would

represent  the  same  number.  Being  numbers,  both  have  a  measure  /  size  /  extension  /

length of 0, and since these two zero lengths ‘lie next to each other’, their distance must

be zero, so that these are the same number. However, this notion of ‘density’ meets with

an  alternative.  If  we  assume  the  liberty  to  write  down  the  ‘end-digits’  then  there  is  a

difference  of  1  /  ¶.  The  numbers  are  densely  packed  in  the  sense  that  each  number

signifies  the end of a length of 1/¶ distance  from the other  number. This  approach fits

the notion of the LengthLimit. It allows 1 / ¶ to be included in � again. It would not be

a symbol like Q or ‰ of which the first digits can be determined. It hence would be of a

different type, but still part of �.

With a function f[x, e[d]] we can imagine a FinalLimit[1/¶ Ø 0, f[x, 1/¶]] = f[x, 0], that

eliminates the distance between 1/¶ and 0. This merely means the change in perspective

that there is no number between 0 and 0.00...001 so that these are the same number. 

Hence Limit[x Ø 0, f[y, x]] = FinalLimit[1/¶ Ø 0, LengthLimit[x Ø 1/¶,  f[y, x]]].

An  overview  (see  also  the  next  section)  (this  still  has  an  omission  of  another  context

where ¶ might be 1 / 0, perhaps we really need different symbols):

Occam Standard Non- Standard

LengthLimit : x Ø 1 ê ¶ n.a. � Ø *�

FinalLimit : 1 ê ¶ Ø 0 n.a. st@„ xD = 0

Limit : x Ø 0 x Ø 0 n.a.

Algebra : Dx = 0 n.a. n.a.

In this, the choice of x = 1 / ¶ would be mere substitution if 1/¶ is accepted as element

of �.  The FinalLimit would be the crucial  step. A circle  might still  be seen as differing

from the inscribed  infinity  of polygons with bases 1 /  ¶,  but  this  difference  disappears

when 1 / ¶ is replaced with zero.

All  this  still  does  not  solve  H1 ê¶L2  =  0.00...001  =  1  /  ¶,  but  perhaps  some arithmetic

can be found.

The use of LenghtLimit does not mean that 1 / ¶ really ‘exists’. It is a mathematical tool

to formulate some thoughts that linger in the human mind when we try to make sense of

the relation between numbers and space. Its prime use would be in education to resolve

paradoxical notions that hinder understanding.

The notation 0.00...01 might still be necessary from a didactic point of view. Some non-

standard  analysis  authors  use  a  super-lens  to  focus  in  on  0,  and  then  they  locate  the

infinitesimal  with  a  mark  close  to  it.  This  makes  only  some  sense  if  there  is  some

terminating  1.  Otherwise  the  gimmick  is  delusional  and  counterproductive  and  a

complete waste of time. 

Zeno’s paradoxes still  cause teasing questions.  The best we can do now seems to allow

for  these  kinds  of  limits,  as  they  generate  different  perspectives  that  can  be  useful  for

some  solutions.  For  example,  the  derivative  first  might  be  formulated  with  the

infinitesimal 1 /¶ and subsequently it could be removed by the final limit. It would be a
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paraphrase  of  the  common  definition  of  the  derivative,  where  the  ‘discarding’  of  the

infinitesimal  amounts  to  setting  it  to  zero.  It  would  at  least  allow  an  important  line  of

development in the history of calculus, including various conceptions of the continuum.

Incidently,  the  approach  to  define  �  first  on  the  rationals  and  then  extend  with  the

irrationals,  and  then  use  the  Dedekind  Cut  to  define  and  show  continuity  (Boyer  page

291-292),  seems  more  complicated  than  §3.2.2,  and  runs  up  against  said  ‘rigour,  with

footnotes’ (in this case footnote 77, though perhaps resolved since 1949).

4.4  My understanding of non-standard analysis

In  non-standard  analysis,  �  is  extended  with  such  infinitesimals  into  *�  (in  above

perspective  it  is  actually  reduced,  since  you first  go to  infinitesimals  and then to  zero).

Since infinitesimal  1 / ¶ is a process and cannot be equated to zero, it  cannot be set to

zero. But it can be ‘discarded’. Thus the procedure st : *� Ø � takes the standard part of

an expression with infinitesimals.  For example, the derivative of x2  can be found as st[

2x  +  dx  ]  =  2x.  As Fermat  already  used  the  notion  of  “adequality”  in  1643 (see  Boyer

(1949:155-156)  and  Katz  & Katz  (2011))  we  can  use  this  word  for  this  map,  and  also

write 2x + dx ~ 2x.

In a sense, it is advisable that non-standard analysis is formulated in a new terminology,

to avoid confusion with familiar words and concepts. At the same time it introduces new

confusion  when  the  same  topics  are  dealt  with.  When  you  go  to  the  bakery  to  buy  a

bread,  you  can  say  it  in  English  or  French,  but  you  are  still  asking  for  a  bread.  The

translation  is  only  useful  when  the  environment  has  changed  language,  and  you  only

learn the new language to say just  the same. To start  using “wörlphf” for  “table” is not

really enlightening.

Non-standard  analysis  is  mainly  developed  for  the  derivative.  It  remains  paradoxical

with respect to the value Dx = 0. See Colignatus (2011e), the Reading Notes for COTP,

for  the  diagram what  the  paradox  means:  there  is  no  contradiction  in  the  mathematical

implemention  but  there  is  a  contradiction  within  the  conceptual  environment  that

generates that implementation.

Katz  &  Katz  (2011)  on  the  notion  of  ‘adequality’:  “As  far  as  the  logical  criticism

formulated  by  Rev.  George  [Berkeley]  is  concerned,  Fermat’s  adequality  had  pre-

emptively provided the seeds of an answer, a century before the bishop ever lifted up his

pen  to  write  The  Analyst.”  Clearly  these  are  only  seeds,  since  Fermat  apparently  still

located  dx  in  �,  and  his  discarding  still  amounted  to  setting  dx  =  0,  so  that  Berkeley's

question was quite legitimate. 

Berkeley’s question nowadays would be: why do so difficult with non-standard analysis,

when we have the refoundation of the algebraic approach in ALOE, EWS and COTP ? 

Davis  &  Hersh  (1980:253):  “We  have  as  before  ds/dt   =  32  +  16dt,  but  now  we

immediately conclude, rigorously and without any limiting argument, that v, the standard

part of  ds/dt, equals 32.” Thus instead of setting dt = 0 the term is ‘neglected’. You do

not see the stain in the carpet if you do not look at it. We may discuss the issue in terms
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of apples and oranges (where the latter may stand for zero):

(1) Standard analysis says: (a) neglect the orange, (b) peel, cut and core the apple, (c) eat

the apple. At least you have had some fruit.

(2) Non-standard analysis says: (a) peel the orange, and take it apart in its parts, (b) peel,

cut  and  core  the  apple,  (c)  neglect  the  orange and  eat  the  apple.  At  least  you have had

some fruit.

(3) The algebraic approach is: (a) neglect the apple, (b) peel the orange and take it apart

in its parts, (c) eat the orange.

4.5  Lakatos and Cauchy 

A  friend  induced  me  to  read  Lakatos  (1978a)  but,  since  it  wasn’t  officially  published

before his death, it must be read in direct conjunction with Dauben (1988) who corrects

some basic errors. Lakatos refers to Boyer p273 and discusses Cauchy’s term “variable”

in conjunction  with Cauchy’s definition  of the infinitesimal  as a variable converging to

zero  but  not  becoming  zero.  Cauchy’s  term  “variable”  actually  means  what  we  now

regard as a sequence.  Cleave (1979) is clearer  on this than Lakatos. For example if e  is

seen as a (modern) variable having values of 1/n in the sequence 1/2, 1/3, 1/4, ... then we

can indeed imagine e as ‘getting smaller and smaller but never becoming zero’. But this

‘getting’ is better seen as a functional dependency.

As my training has been in the Weierstraß method all this seems a bit arcane to me. Why

employ in calculus the baroque construct of an ordered sequence as an object of itself ? I

think that there has been progress from Cauchy to Weierstraß,  with the modern concept

of a  variable  and taking a  limit  of  1/n  with n  Ø  ¶.  The  modern idea  of  a  variable  is  a

label or placeholder that can be assigned an arbitrary value in a domain.

It  may well  be  that  there  is  a  shift  in  perspective:  Cauchy looking horizontally  and  we

moderns looking vertically.

variable x 1 1 ê 2 1 ê 3 ...

ò ò ò ò ò ...

function f @xD f @1D f @1 ê 2D f @1 ê 3D ...

Similarly, when we regard the expression Limit[x Ø 1 / ¶, f[x]] then x might be said to

be  an  infinitesimal,  as  it  is  the  variable  that  is  thought  to  be  subjected  to  the  limiting

process. The Cauchy way of thinking in terms of a process thus survives in the notation,

even  though  standard  analysis  takes  that  notation  to  be  a  summary  of  the  Weierstraß

rule.  (And  the  notation  Limit[x  Ø  0,  f[x]]  apparently  might  be  an  awkward  shorthand

when 0 can or can’t be attained.)

4.6  Others

Borovik & Katz (2011) and Katz & Katz (2011) are very instructive on the issue.

Borovik  &  Katz  (2011)  suggest  that  the  infinitesimal  can  be  seen  to  come  about  as  a

jump from a  verb to  a  noun,  or  from a process  to  a  concept  (and  they refer  to  Gray &
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Tall  1994  “procept”,  Dubinsky  1991  “encapsulation”  and  Sfard  1991  “reification”;

while  Katz  & Katz  (2011)  also  refer  to  an  older  philosophical  term “hypostatisation”).

This seems to be accurate in the sense of identifying such a variable. This does not mean

that  other  aspects  are  immediately  defined.  For  the  shift  of  focus  from the  potential  to

the  actual  infinity  we  have  a  well-defined  shift  from  �  as  a  process  to  �  as  the

continuum.  But  the  rules  of  ‘arithmetic’  with  respect  to  infinitesimal  1  /  ¶  are  not

directly given.

Matt  Insall  and  Eric  Weisstein  of  Math-World  clarify  that  its  inifinitesimals  are

“numbers that are less than 1/2, 1/3, 1/4, 1/5, ..., but greater than 0”. This is gibberish to

me since  I  see  a  sequence  and  no  number.  There  is  no  definition  what  this  “less  than”

would mean if  such a number is  absent.  Katz  & Katz  (2011) rightly remark that  this  is

better:  “Both  Carnot  and  Cauchy  say  that  an  infinitesimal  is  generated  by  a  variable

quantity  that  becomes  smaller  than  any  fixed  quantity.  No  contradiction  here.”  This  is

only clear though once you have learned that this “variable quantity” has another domain

than  �,  for  Cauchy  a  null  sequence,  and  for  non-standard  analysis  *�,  such  that  the

“smaller than” is the complex "e > 0 : st[ dx ] = 0 < e. Perhaps it resolves all discussion

if we define 1/¶ = 0.00...001 and accept that we still need the algebraic approach for the

derivative.

Curiously Dauben p194 mentions that Cantor “adamently” rejected  infinitesimals.  Also,

Dauben  p196:  “Kurt  Gödel  valued  Robinson’s  achievement  for  similar  reasons:  it

succeeded  in  uniting  mathematics  and  logic  in  an  essential,  fundamental  way.  That

union  has  proved  to  be  not  only  one  of  considerable  mathematical  importance,  but  of

substantial philosophical  and historical  content as well.” ALOE rejects  Gödel’s analysis

on  his  incompleteness  theorem  as  essentially  misguided.  However,  the  link  to  non-

standard  analysis  would  be  based  upon  his  completeness  theorem,  which  is  another

theorem.  Nevertheless,  reading  Boyer  on  the  winding  road  for  calculus  and  reading

Lakatos on all kinds of consequences of Gödel’s analysis that however hangs in the air, I

fear that we must be careful with historical issues and quotes from popular authors. This

is of course only a fear and not a proper conclusion based upon a deeper study. (I did not

even try Keisler (1986, 2010).)

What is interesting though is that there apparently has been an experiment in comparing

the results  of teaching both Weierstraß  and Robinson on the derivative. Hopefully there

can be an experiment with the approach in ALOE, EWS and COTP too.

There  is  always  Brouwer  and  intuitionism.  See  the  chapter  in  ALOE.  Kuiper  (2004)

seems  like  a  useful  recent  contribution  with  clearer  reformulations.  My  impression  is

that  time  and  space  are  qualitatively  different,  and  that  space  is  a  more  natural

environment  for  the  hypothesis  of  continuity.  But  opinions  may  differ  and  it  would

suffice to discuss what is mathematically necessary.

4.7  Education

Ely (2010) may be read either as the embarrassment of our system of education or as the

valiant effort like by the Baron von Münchhausen to save education by lifting itself from

2012-03-27-ContraCantorProOccam.nb 25



its  own morass.  Ely refers  to the  education  on the real  line,  where  the  ambiguity about

0.999... and 1 exists since Stevin and is allowed to continue till our times. EWS clarifies

that  the  chaos holds  for  many more topics.  My advice in  EWS to have a parliamentary

enquiry  into  mathematics  education  can  be  underlined  again,  in  boldface  pointsize  72

with flowers and Chanel 5. But let us look at the real line.

Above I suggested the notation 0.00...001. Subsequently I started a search on the internet

whether  that  notation  had  been  used  before.  This  gave  Ely  (2010)  who  shows  that  a

student  Sarah  invented  this  notation  too  (it  is  a  long article,  see  in  particular  p129-131

and p137). This fits my idea: in didactics, listen to students. However, this can’t resolve

fundamental  issues  in  mathematics  and  here  we  require  good  theory.  With  a  good

educational  plan,  Ely  could  have  used  the  structured  survey  instead  of  the  open

interview.  The  use  of  the  latter  on  numbers  is  a  testimonium paupertatis.  There  is  also

Katz & Katz (2009) who use 0.999...9 but for finite  lists,  and they refer  to Lightstone’s

semicolon for infinite lists.  These are long texts to read while for me the basic question

was whether there is an arithmetic for 0.00...001. This is still not clear and I have to put

an end to a search somewhere.

Thus,  the  suggestion  is  that  theorists  on  non-standard  analysis  switch  to  the  algebraic

approach,  and  design a  didactically  clear  system for  the  real  number line  to  be  used in

education.

4.8  Lakatos on quasi-empirics

EWS holds that mathematicians are trained for abstract  thought but that education is an

empirical  issue.  Lakatos  (1978b),  apparently  trained  in  abstract  thought,  still  was

sensitive  to  Popper’s  “conjectures  and  refutations”  and  falsificationism,  and  came  up

with  his  own  “proofs  and  refutations”  and  characterisation  of  mathematics  as  “quasi-

empirical”.  It  is  OK  to  observe  that  mathematics  uses  argumentation,  with  pro’s  and

contra’s.  But  empirical  issues  only  enter  in  education  and  application,  while  empirical

experience  often  generates  inspiration  for  abstraction.  Since  we  already  have  a  word

“abstract  thought”  I  do  not  think  that  we  need  another  word  like  “blot-phf”  or  “quasi-

empirical”.  I mean, there is  an urgent need to redesign the education of mathematicians

towards  sound  familiarity  with  empirical  matters,  and  it  would  be  a  great  confusion  to

think that it is already so in sufficient manner.

Lakatos’s  work  incidently  appears  to  be  hard  reading  because  he  takes  Gödel’s

incompleteness theorems as basic and extends from there. If he had been really empirical

then he would have had cause to doubt them, see ALOE. It still would be useful to have

a “Lakatos Revisited” book to save the analyses that are still relevant (e.g. his discussion

on Newton’s legacy).

5.  Textbooks with news

ALOE  and  COTP  have  been  written  in  textbook  format  targetted  at  freshmen.  They

build  up  from  the  basics  and  include  the  news  along  the  way,  and  conclude  with
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discussion at the advanced level. COTP is explicitly a primer for mathematics education

(though in textbook format). Thus, these books explicitly differ from standard textbooks

that  reprocess  known  material  and  that  do  not  contain  news.  The  reason  for  this

construction is that  it  appeared to be the best  format to communicate these new results.

The  steps  from  the  basics  onwards  apparently  can  be  so  subtle  and  so  internally

interconnected with the various new insights that it  is better to show what it amounts to

rather than explicitly discuss the results separately. 

I suggested the two books to a Book List  of a general mathematical society.  The books

were  rejected  since  they  had  the  textbook  format  and  thus  apparently  were  considered

not  to  contain  news  relevant  for  mathematicians  in  that  society.  I  wonder  what  Boyer

would  have  thought  of  this,  who  wrote  these  few  lines  on  “the  formost  textbook  of

modern times” (1950). He selects Euclid’s Elements, Al-Khwarizmi Al-jabr, and Euler’s

Introductio in analysin infinitorum.  It is not my intention to compare ALOE and COTP

to  these  books  in  terms  of  standing  but  only  with  respect  to  the  suggestion  that  these

authors  did  not merely reprocess  known material  but  also  collected  original  findings of

their own to create a coherent whole.

6.  Conclusion

A consequence of “A Logic of Exceptions” (ALOE, draft 1981, 2007, 2nd edition 2011)

is  that  it  refutes  ‘the’  general  proof  of  Cantor’s  Theorem (on  the  power  set),  so  that  it

only  holds  for  finite  sets  but  not  for  ‘any’  set.  The  diagonal  argument  on  the  real

numbers can be rejected as well (a new finding now in 2011). There is a bijection ‘in the

limit’ or ‘by abstraction’ between � and �. If no contradiction turns up it would become

feasible  to use the notion of a ‘set  of all  sets’  �,  as it  would no longer be considered a

contradiction  that  the  power  set  of  �  would  be  an  element  and  subset  of  �  itself.  The

books  ALOE,  “Elegance  with  Substance”  (2009)  and  “Conquest  of  the  Plane”  (2011)

also  develop  calculus  without  the  use  of  limits  or  infinitesimals.  Lagrange’s  algebraic

approach  is  best  supplemented  with  a  manipulation  of  the  domain.  Non-standard

analysis  is  not  needed  for  the  derivative.  Some aspects  of  it  may  be  reformulated  and

then  may  be  of  use  for  the  education  on  the  real  number  line.  This  paper  puts  these

results into historical perspective.

Appendix: Rejection of Cantor’s original proof

Taken from Hart (2011):
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Unfortunately Hart (2011) uses Dutch so we now use the text from Wikipedia March 6

2012 after checking that it fits with Hart (2011):

Let us now redo this method of proof using the �[1], ... ,  �[d]. As said the numbers are

ranked up to 10d . For clarity we can take the news D[d] = �[d] \ �[d-1], and then rank

the  digits  as  X[d]  =  D[1]  ‹  D[2]  ‹  ...  ‹  D[d]  =  {x0,  x1,  ...,  x10d},  where  the  union

maintains  order.  Taking  the  interval  from [a,  b]  generates  [a[d],  b[d]].  For  example,  if

we start  on [0,  1] then [a[1],  b[1]]  = [0.1,  0.2],  then [0.11,  0.12],  [0.111,  0.112] and so

on. (Rather nicely we might think of the limit value of 1/9.)

We now take �[d] @ �. Subsequently also X[d] @ X. Clearly X is only a permutation of

�, and all numbers are represented. Let us denoted the final interval as [a, b].

The suggestion that there is an h œ [a, b] but h – � is erroneous since we see that all �

are represented.

Thus  there  is  something  crooked  in  this  method  of  proof.  Note  that  there  is  no  finite

number to find the final interval. Note that taking the interior of [a, b] is impossible if a
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= b.  Taking  the  interior  of  [a[d],  b[d]]  is  quite  possible  since  the  numbers  are  defined

such that a[d] ∫ b[d]. But the notion of an “interior” apparently loses meaning when we

take the step of abstraction. 

(Regard for example the series with limits a = 0.9999... and b = 1.000.... It is common to

conclude that a = b so that there is no h inbetween.)

This completes the rejection of Cantor’s original proof. 

Discussion: His proof seems to work since he assumes that � is built up in the manner of

a potential  infinite,  but the proof uses that all elements have an actual  infinity of digits.

Instead,  the  proof  can  only  use  numbers  up  to  a  certain  digital  depth  d,  and  create  the

interval  only  alongside  the  construction  of  �  itself.  The  notion  of  an  interior  uses  a

distance  measure  that  relies  on  actual  infinites,  and  this  apparently  also  conflicts  with

the construction of �  from �[d]. Cantor assumes that he can define the various notions

independently, but they get only meaning in their mutual dependence, and then must be

constructed in a dependent manner. 
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