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Summary

Define  y  /  x as  the “outcome” of  division and y  //  x as  the “procedure”  of division that

will  have  the  outcome  y  /  x  if  the  denominator  x  cannot  be  eliminated  but  that  will

generate another result when the expression can be simplified algebraically. Using y // x

with  x  possibly  becoming  zero  will  not  be  paradoxical  when  the  paradoxical  part  has

first  been eliminated by algebraic simplication.  The Weierstrasz  e  > 0 and d  > 0 and its

shorthand for the derivative lim(Dx Ø 0) Df / Dx are paradoxical since those exclude the

zero values that are precisely the values of interest at the point where the limit is taken.

Instead, using Df // Dx and then setting Dx = 0 is not paradoxical at all. Much of calculus

might well do without the limit idea and it could be advantageous to see calculus as part

of  algebra  rather  than  a  separate  subject.  This  is  not  just  a  didactic  observation  but  an

essential  refoundation of calculus. E.g. the derivative of | x | traditionally is undefined at

x = 0 but would algebraically be sgn[x], and so on.



Introduction

Since its invention, the zero has been giving trouble.  We learned that y /  x  is undefined

when x = 0 but precisely that value appears important in calculus and thus an elaborate

edifice  was  created  to  deal  with that.  Consider  the  following four  expressions,  the  first

three well-known and the fourth a new design.

  1.  The differential quotient Df / Dx = (f[x + Dx] - f[x]) / Dx for Dx ∫ 0. Note that 

one would see this as a result and not as a procedure.

  2.  The derivative f'[x] = „f / „x = limDxØ 0 Df / Dx.

  3.  The current theoretical true meaning of the derivative with outcome value L:  " 

e > 0  $ d > 0 so that  | Df / Dx - L | < e for 0 < | Dx | < d.

  4.  The new suggestion: f'[x] = {Df // Dx & Dx := 0}. This means first simplifying 

the differential quotient and then setting Dx to zero. 

Here y // x is defined as the “procedure of division” that will have the outcome y / x if the

denominator  x  cannot  be  eliminated  and  that  will  generate  another  result  when  the

expression  can be simplified algebraically.  The symbols “//”  and “:=” express activities

or procedures rather than completed results. For example, 4 // 2 would be the activity of

dividing 4 by 2, generating the result 1/2. Clearly, 4 // 0 would be undefined just like 4 /

0. But „x2  / „x = {(Hx + DxL2  - x2) // Dx & Dx := 0} = {2x + Dx & Dx := 0} = 2x handles
a  seeming  “division  by  zero”  that  actually  is  no  such  division.  While  the  Weierstrasz

approach in format 3 above uses predicate logic to identify the limit values, the approach

in format 4 uses the logic of formula manipulations.

Since  we  have  been  taught  not  to  divide  without  writing  down  that  the  denominator

ought to be nonzero, the following explanation will help for the proper interpretation  of

the  derivative:  first  the expression  is  simplified  for  Dx  <> 0,  then the  result  is  declared

valid  also for  the domain Dx  = 0,  and then Dx  is  set  to the value 0. The reason  for  this

declaration of validity resides rather not in the Weierstrasz approach but in the algebraic

nature of the elimination of a symbol, as in e.g. x // x = 1.

In a  way, this  suggested notation  is  nothing new since  it  merely codifies  what we have

been  doing  since  Leibniz  and  Newton  (alphabetical  order).  In  another  respect,  the

approach  is  a  bit  different  since  the  discussion  of  “infinitesimals”,  i.e.  the  “quantities

vanishing to zero”, is avoided while the interpretation given by Weierstrasz and codified
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in the notion of a limit is rejected since that definition of the limit excludes the value Dx

= 0 which actually is precisely the value of interest at the point where the limit is taken.

Undoubtedly,  the  notion  of  the  limit  (and  Weierstrasz’s  implementation)  remain  useful

for  other  purposes.  It  also  remains  an  important  tool  to  vary  Dx  to  show  that  the

derivative indeed gives the slope. That said, the discussion can be simplified and pruned

from paradoxes.

It remains to discuss “what to make of this”.

Aspect 1: theoretical origin

When we look at the issue from this new algebraic angle, the problem in calculus has not

been caused by the “infinitesimals” but by the confusion between “/” and “//”. At school,

Leibniz,  Newton and Weierstrasz  were  trained to regard y /  x  as  sacrosanct  such that  it

indeed doesn’t have a value for x = 0. They worked around that, so that algebraically y /

x could be simplified before x got its value. While doing so, they created a new math that

appeared useful for other realms. These new results gave them confidence that they were

on  the  right  track.  Yet,  they  also  created  something  overly  complex  and  essentially

inconsistent.  Infinitesimals  are  curious  constructs  with  no  coherent  meaning.  Bishop

Berkeley  criticized  the  use  of  infinitesimals,  that  were  both  quantities  and  zero:  who

could  accept  all  that  need,  according  to  him,  “not  be  squeamish  about  any  point  in

divinity”.  The  standard  story  is  that  Weierstrasz  set  the  record  straight.  However,

Weierstrasz’s  limit  is  undefined  at  precisely  the  relevant  point  of  interest.  “Arbitrary

close” is a curious notion for results that seem perfectly exact.
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Aspect 2: division in general

We can also reap the benefit  from other cases where we supposedly divide by zero. For

example,  there  is  no  need  to  be  very  strict  about  always  writing  “//”.  Once  the  idea  is

clear, we might simply keep on writing “/”. An expression like (1 - x2) / (1 - x) would be

undefined at x  = 1 but the natural  tendency is to simplify to 1 + x  and not to include a

note that x ∫ 1 since there is nothing in the context that suggests that we would need to

be so pedantic.  Standard graphical routines also skip the undefined point (see the graph

below).  The  current  teaching  and  math  exam  practice  is  to  use  the  division  y  /  x  as  a

hidden code that must be cracked to find where x = 0 but it should rather be the reverse

that such undefined points must be explicitly provided if those values are germane to the

discussion.

SimplifyAI1 - x2M ë H1 - xLE

x + 1

PlotAI1 - x2M ë H1 - xL, 8x, -2, 2<E;
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As  a  note,  it  is  useful  to  observe  the  following.  The  classic  example  of  the

inappropriateness  of division by zero is the equation (x - x) (x + x) = x2  - x2  = (x - x) x,

where division by (x - x) causes x + x = x or 2 = 1. This is also a good example for the

clarification  that,  indeed,  one  should  never  divide  by zero,  so  that  we must  distinguish

between:
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   †  creation of a fraction such as putting “/” or “//” between “(x - x) (x + x)” and “(x 

- x)”

   †  handling of a fraction such as (x - x) (x + x) (/ or //) (x - x) once it has been 

created.

The first can be the great Sin that creates such nonsense as 2 = 1, the second is only the

application of the rules of algebra. In this case, the algebraic rules tell  us that x - x = 0,

so that simplification generates a value Indeterminate, and this would hold for both / and

//. Also a (x + x) / a would generate 2x for a ∫ 0 and be undefined for a = 0. However, if

we would have an expression  a  (x + x)  //  a then the result  would be 2x, and this  result

would also hold for a = x - x = 0. 

Aspect 3: students

Generations  of  students  have been  suffering.  Teachers  of  math seem to  have overcome

their own difficulties and thereafter don’t seem to notice the inherent inconsistencies. 

Conversely, if the new notation is adopted then the algebraic origin of the derivative will

be recognized, strengthening the insights in logic and algebra. Time can be won for more

relevant issues.

Teachers  may be less tempted to distinguish between “those who know the truth” (the e

and  d)  (who  thus  actually  are  wrongfooted)  and  “those  who  only  learn  the  tricks”

(unadorned calculus).

Aspect 4: integration

With f'[x] the derivative of f[x] it is straightforward to say that the latter is the integral of

the former (i.e. assign the label “integral” to the reverse operation). It is less obvious that

such  an  integral  concerns  the  surface  under  the  curve.  But  this  demonstration  could  be

done  in  reverse  order,  by starting  with  a  curve  that  gives the  surface  and  then  find  the

derivative. Let F[x] be the surface under y = f[x] till x,then the increase in surface is 

DF = F[x + Dx] - F[x] = Dx (y + Dy/2)        (*)
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and we find y = f[x] = F'[x] as usual. Note in this derivation that it is tempting to divide

both sides by Dx but of course we cannot do so directly if Dx  is to be set at zero. What

we  can  do  however  is  use  the  definition  of  the  derivative  and  substitute  the  surface

change, i.e. F'[x] = {DF // Dx & Dx = 0} = {Dx (y + Dy/2) // Dx & Dx = 0} = y since Dy =

f[x + Dx] - f[x] = 0 when Dx = 0. Thus, in deriving F'[x] it seems that we divide equation

(*)  on  both  sides  by  Dx  but  the  true  point  is  that  we  use  the  fact  that  the  differential

quotient  is  a  (dynamic)  quotient.  In  this  case  the  seeming  division  on  both  sides  of

equation  (*)  actually does not give a problem since it  is  a “//” again, yet the right hand

side might give a problem, conceptually,  since a “surface” with a vanishing width is no

surface at all. The point however was to show that the derivative of a surface function F

generates  the  function  f  =  F'.  The  choice  of  Dx  =  0  rather  deals  with  finding  the

derivative and not with finding the surface.

Hence, the proper introduction to calculus might be to start with a function that describes

a surface and then find the derivative. This establishes  that the reverse operation on the

derivative gives a function for the surface.

This  is  not  to  say that  it  wouldn’t  be  enlightening  to  support  an  analysis  like this  with

graphics of approximating a surface,  especially  to explain where Ÿ f @xD „ x  comes from.
Historically,  surfaces  and  volumes  also  seem  more  important  conceptual  drivers  than

gradients.  Nevertheless,  the  discussion  above  suggests  that  the  major  stumbling  block

still  is  the  derivative  and the  seeming division by zero,  which stumbling block we also

find in above explanation  of integration.  This  has now been dealt  with in a satisfactory

manner.

Naturally,  to  be  completely  satisfactory,  we  should  note  that  (*)  actually  is  a  bad

approximation.  I  have  hesitated  to  start  with  it  but  (*)  is  close  to  current  practice  of

exposition and thus (*) provides a bridge for understanding. But properly speaking, (*) is

an approximation for which we have º instead of =. Proper is:

DF = F[x + Dx] - F[x] = Dx (y + Dy/2) + Dx error[Dx]        (**)

which is an implicit definition  of the error function  error[Dx]. Again we find y =  f[x] =

F'[x], using that error[0] = 0.  

Expression  (**)  also  allows  us  to  understand  the  derivative  as  a  result  of  the  explicit

formulation of the error function:

error[Dx] = DF // Dx - (y + Dy/2)         (***)
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The  deeper  reason  (or  “trick”)  for  this  construction  is  that  (**)  does  not  use  an  e[Dx]

which would cause the question what the outcome of e[Dx] //  Dx  would be. Instead, the

explicit  definition  (***)  or  implicit  version (**)  gives exactly  what  we need for  both a

good expression of the error and subsequently the derivative at Dx = 0. 

Of course, once we know this,  it  is OK to use (*)  for Dx  = 0 as well.  However, though

this  is  standard  practice,  and  conceivably  OK  for  introductory  courses  in  calculus,  we

could wonder what actually would be the best approach. It may well be that the complete

discussion of the true error function via (**) and (***) brings much more understanding

where  the  notion of  the “derivative”  comes from. Possibly some randomized controlled

trials in education would bring more light in this question.

Aspect 5: Refoundation

All  these  are  not  just  didactic  observations  but  amount  to  an  essential  refoundation  of

calculus.  The  approach allows solutions  where situations  up to now are undefined. E.g.

the derivative of | x | traditionally  is undefined at x  = 0 but would algebraically become

sgn[x].  Namely, for  x  ∫  0,  we can work through the  various  combinations  and find  the

normal result,  sgn[x], while for x  = 0 the differential  quotient  collapses to | Dx  | //  Dx  =

sgn[Dx] as well, which becomes 0 when Dx = 0. One can imagine that there will be more

results like this. There will be a tendency amongst mathematicians to think that calculus

has been well-developed and no longer is a subject for research so that the upshot of this

paper in their eyes will only be didactic. This thus would be a misconception.

Conclusion

History is a big subject and we should be careful about drawing big historical lines. But

the following seems an acceptable  summary of the situation where we currently find us

after the introduction of the 0.

Historically,  the  introduction  of  the  0  gave  so  many  problems  that  when  those  were

getting solved, those solutions,  such as that one cannot divide by zero, were codified in

stone,  and  pupils  in  the  schools  of  Europe  would  meet  with  bad  grades,  severe

punishment and infamy if they would sin against those sacrosanct rules. Tragically, a bit
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later  on  the  historical  timeline,  division  by  zero  appeared  important  for  the  differential

quotient.  Rather  than  slightly  modifying  our  concept  of  division,  Leibniz,  Newton  and

Weierstrasz  decided  to  work  around  this,  creating  the  concepts  of  infinitesimals  or  the

limit. In this way they actually complicated the issue and created paradoxes of their own.

Logical  clarity  and  soundness  can  be  restored  by  distinguishing  between  the  act  of

division and the result of division.

“Most”  derivatives  can  be  found  without  the  Weierstrasz  technical  purity  and  “many”

courses teach calculus without developing that purity. The distinction between static and

dynamic  division  suggests  that  the  Weierstrasz  purity  may  be  overly  pedantic  for  the

main  body  of  calculus.  The  exact  definition  of  the  limit  is  of  great  value  but  not

necessarily for calculus. The Weierstrasz e > 0 and d > 0 and the derivative’s shorthand

lim(Dx Ø 0) Df / Dx are paradoxical since those exclude the zero values that are precisely

the  values  of  interest  at  the  point  where  the  limit  is  taken.  Instead,  using  Df  //  Dx  and

then setting Dx = 0 is  not  paradoxical  at  all.  “Much” of calculus might well  do without

the limit idea.
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